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Abstract— We consider a list decoding algorithm recently proposed by
Pellikaan-Wu [4] for q-ary Reed-Muller codes RM q(`, m, n) of length
n ≤ qm when ` ≤ q. A simple and easily accessible correctness proof is
given which shows that this algorithm achieves a relative error-correction
radius of τ ≤

(
1−

√
`qm−1/n

)
. This is an improvement over the proof

using one-point Algebraic-Geometric decoding method given in [4]. The
described algorithm can be adapted to decode product Reed-Solomon
codes.

We then propose a new low complexity recursive algebraic decoding
algorithm for product Reed-Solomon codes and Reed-Muller codes.
Our algorithm achieves a relative error correction radius of τ ≤
∏

m
i=1

(
1−

√
ki/q

)
. This technique is then proved to outperform the

Pellikaan-Wu method in both complexity and error correction radius
over a wide range of code rates.

I. INTRODUCTION TO CODES

Error correction codes are ubiquitous - they find use in DVDs,
CDROMs, computer hardware, communication systems, space etc.
Codes provide protection to valuable data against errors introduced
as a result of a natural degradation or adversarial action.

A q-ary linear error-correction code C[n,k,d] of length n and
dimension k is just a k-dimensional subspace of the n-dimensional
vector space Fn

q over the finite field Fq. So, C[n,k,d] ⊂ Fn
q. The

minimum Hamming distance d of the code is the least number of
positions in which any two of its vectors differ. In typical applications,
the larger the minimum distance, the better the code. Also we
represent information sequences with corresponding codewords and
wish to recover those codewords corrupted by noise: r = c+e, where
c ∈ C. See Figure 1.

II. SIMPLIFIED PROOF FOR PELLIKAAN-WU ALGORITHM AND

SCHWARTZ LEMMA

Reed-Solomon codes are a very important family of codes with d =
n− k +1. Reed-Muller codes and Product-Reed-Solomon codes can
be thought of as related derivative codes. Let ρ = k/n denote the code
rate. Various algebraic Reed-Solomon decoders due to Berlekamp
et al.[1960s] can decode any error pattern of weight less than n ·
(1−ρ)/2. Recent progress made by Sudan[1997] and Guruswami-
Sudan[1999] resulted in an algebraic list decoder for RS codes which
can correct any error pattern of weight less than n ·(1−√ρ). All these
decoders are instances of bounded distance algebraic decoders, with
guaranteed error correction radius which is efficiently achievable. See
Figure 2.

With the discovery of deterministic list-decoding algorithms for
several Algebraic-Geometric codes, most notably the Guruswami-
Sudan [2] algorithm, there has been renewed interest in algebraic
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Figure 1: In principle any error of weight upto d−1
2 can be corrected.
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Figure 2: Comparison of bounded distance algebraic decoders for RS
codes. τ is the relative error correction radius.

decoding methods for other related q-ary codes such as the Reed-
Muller [3], [4] and product Reed-Solomon codes. However some
of the existing correctness proofs for these algorithms use advanced
algebraic geometric tools. In this research we derive a proof for a list
decoding algorithm for a q-ary Reed-Muller code. Our proof is from
first principles and require only the most basic notions from finite
field theory.

The basic idea of our proof is to “lift” a multivariate polynomial
in Fq[x1, x2, . . . , xm ] to a univariate polynomial in Fqm [X ] using a
deterministic mapping rule. This in turn results in a higher total
degree polynomial. The increase in degree will not be high enough
to render our list decoding strategy for Reed-Muller codes useless at
meaningful rates. A higher degree for the lifted polynomial means
that this Reed-Muller code list decoding algorithm has a lower
relative error-correction radius (as a function of the rate) than a



comparable rate Reed-Solomon list decoder based on the Guruswami-
Sudan algorithm.

A. Some Considerations on our results

The complexity of our proposed algorithm is of the same order as
the complexity of Guruswami-Sudan algorithm for decoding Reed-
Solomon codes over the extension field Fqm . This is O(n3) field
operations in Fqm .

Product-Reed-Solomon code PRS q,m(qm, k1, . . . , km) is con-
tained in RM q(∑m

i=1(ki − 1), m, qm). When ∑
m
i=1(ki − 1) ≤ q the

list decoding we consider can be used to achieve a relative error
correction radius of (1−

√
∑

m
i=1 ρi), where ρi

def= ki/q.
We also give a simple deterministic proof for the famous DeMillo-

Lipton-Schwartz-Zippel lemma for polynomials over finite fields.
Note that the statement above appears to be stronger than the classical
lemma in that this counts multiplicities too. Moreover the proof
also appears to differ from the traditional expositions which use
probabilistic arguments.

III. A RECURSIVE DECODING ALGORITHM FOR PRODUCT

REED-SOLOMON AND REED-MULLER CODES

Having given a simplified proof for the recently proposed, leading
algebraic decoder for Reed-Muller and Product-Reed-Solomon codes,
we then go ahead to propose two new algorithms for decoding product
Reed-Solomon codes and Reed-Muller codes. We show that these
new algorithms perform better than the Pellikaan-Wu algorithm in
both complexity as well as decoding capability.

We have the following result concerning the decoding power of
our new algorithms.

Theorem 1 Our new PRS decoder has a relative error correction
radius of τm

def= ∏
m
i=1(1−

√
ρi), where ρi

def= ki/q. Moreover, there
exist error patterns of weight above n∏

m
i=1(1−

√
ρi) which cannot

be guaranteed to be efficiently decoded by the new algorithm.

A. Considerations on our newly proposed decoders

The complexity of our new RM decoder is ≈O(n2) field operations
in Fq. This is substantially better than the Pellikaan-Wu method. For
PRS decoding our new algorithm achieves a nearly linear complexity.

Our new algorithms not only have a lower complexity, but also
perform better over a wide range of rates. For example when ∑i ρi >
1, the Pellikaan-Wu algorithm is not effective, whereas our new
algorithm is still very useful. Furthermore ∏

m
i=1(1−

√
ρi) is larger

than (1−
√

∑
m
i=1 ρi) for most code rates and the advantage is more

pronounced at higher code rates. See Figure 3.
The performance of several popular empirical iterative hard deci-

sion decoders for product Reed-Solomon codes available in literature
can be characterized using Theorem 1. Essentially similar conclusions
are also obvious for the case of other product codes which have
algebraic bounded distance decoders available for their component
codes.

IV. CONCLUSIONS

In this work, we presented a simple and easily accessible proof
for the Pellikaan-Wu algebraic decoding algorithm for Reed-Muller
codes. Our proof uses only the fundamental properties of finite field
arithmetic.

We also proposed a low complexity recursive algorithm for Reed-
Muller and Product-Reed-Solomon codes. We further showed that
the new algebraic algorithm has a significantly better error correction
radius than the Pellikaan-Wu algorithm over a wide range of code
rates.
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(a) 2D radii of the two algorithms.
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(b) 2D rate region where our algorithm per-
forms better is shown in red.

5 10 15 20
m

0.75

0.8

0.85

0.9

0.95

1

Vm

RMperf4.nb 1

(c) Relative rate region volume where our algorithm performs
better is computed. The new algorithm is seen to out-perform
the Pellikaan-Wu algorithm over most of the rate region.

Figure 3: Comparison of Pellikaan-Wu versus our new recursive
RM/PRS decoder.
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